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Abstract
We document machine learning that differentiates good and bad trades in volatile financial
markets. An applied solution is detailed with 90%+ results. The strategy entails sequence data
mining, synthetic minority resampling, and the use of KMeans clustering to achieve classifiable
features before classification. Model features imply that markets strongly associate price swings
with sell-side order activity, as precursors to upward price swings. We demonstrate the use of
several classifiers reaching this accuracy.
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Introduction: Applying Data Science in Trading Problems
Typically, 70% of daily market volume is initiated by autonomous, algorithmic agents.[3]

These ‘bots’, Computer Trading Algorithms (CTA), or Artificial Intelligence agents are risking
institutional funds and accumulating more importance in the financial industry. At this juncture,
this is enabling firms to exit actual cities where trading is done, such as New York and Chicago.

Digital exchanges disclose snapshots of the pending, unfilled orders in a limit order
book, or LOB. The limit order book is a multifaceted source of data, detailing at what prices a
commodity or digital equity is willingly sold, or purchased. For each order a volume is given.
Since demand levels are known before a price rises or falls, a data science problem, given the
LOB must consider these features. In our view, the limit order book provides statistical power,
when sampled over time.

Prior Work
We are motivated by prior work by Sirignano and Cont, where deep learning methods

uncovered signals within markets, leading to price change.[7] Possessing access to adequate
stores of data is not in our purview. We borrow corporate data from one year of data collection,
and do so under a feature representation where details are aggregated from raw market data.
Thus, our use of a neural structure to uncover signaling is not possible.

We are dismayed by ongoing efforts to uncover similar price signals from qualitative,
natural language factors such as news stories and other journalism, as used in Riordan. We fear
that entities which own publishing outlets can sway their content, to bias these models. Hence,
we are seeking a method of identifying time series events (precursors) which serve a similar
purpose as Riordan’s use of natural language, but in the limit order book domain.[6]

We are keenly following the work of Zheng/Moulines, who approach the same problem
of identifying price spikes.[5] Their method emphasizes lasso and linear methods to identify
regressions which precede price spikes. We admire this work, and attempt to borrow a lasso
method. However, we are more interested in the use of data mining to isolate moments that lead
to price change, and are not using linear regression in our work. We aim to capture some of the
accuracy of Riordan’s model, where conditions lead to price spikes, but do so from a sequence
of measurable quantitative features.

Business Constraints We Must Observe
An additional constraint exists within our work. Our focus is on traders who must initiate

trades which finish quickly, are not waiting for a long duration to complete a profit, and engage
the market daily. This is a risk context for day traders, who exploit short term scenarios. Seeking
short term trading horizons are notoriously difficult, given the inhuman pace of order books.
However, the temptation exists to try to tap into or harness the daily permutation within prices.

Our project assumes several facts about markets, driven by limit order books.
1. There are limited features provided by exchanges. New features must be

engineered.
2. Data exists as a time series. However, markets present themselves as sequences,

where one period of activity is followed by another.
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3. We contend that markets are fundamentally composed of dull periods of little
change, followed by drops.

4. Sometimes, dull periods are followed by surges in price. These are the most
valuable situations within markets.

5. Thus, a market is a sequence of context, then a result. As such, the features specific
to tradeable, profitable sequences are knowable.

Our study assumes that the profile of a surging market can be observed, statistically, using
facets of the limit order book. Hence, our machine learning aims to learn those conditions which
result in surges, and identify them, given new and unseen data.

A Useful Lexicon for the Trading Industry
Because the reader may not have professional experience in trading commodities or financial
goods, a lexicon is presented here. The authors use these terms in the paper.

1. Precursors. Moments before surges. Identified as periods of discontinuous positive
momentum below a threshold value, for all samples.

2. Surges. Moments in the markets where multiple observations have continuous price
momentum. Surges are values in terms of their ability to fulfill price goals for all price
points within a precursor. Hence, when a precursor occurs in a market, are the surges
able to deliver profit for all price points in the precursor? This is what we define as a
desirable trade, for which we will search and classify sequences.

3. Sequences. A two part combination of a precursor, followed by a surge. In the sequence
there are multiple observations, with prices and types of buy orders.

4. Bids. orders to buy a commodity
5. Asks. orders to sell a commodity
6. Capitalization. The amount of an order, multiplied by its price, expressed as a sum

dollar value, of one or more orders. Represents value at risk, during a trade.
7. Targets. The goals for a trade, where a commodity is purchased, then sold at a targeted

price. Assumes a profit goal, expressed as a percentage.

Design Considerations for High Frequency Trading
Hedge funds and institutional trading is an instance of positioning capital on a short term

basis. This differs from all other forms of investing, where a tranche of money is intended to be
used for day-long, or minutes-long use. The trader might only do one trade per day, and this
may only last for a few minutes, under the right conditions.

In most conditions, the trader is an autonomous agent, intended to monitor markets for a
once-per-day opportunity. Hence, forecast models are excellent for long term positions. Also,
neural networks are used to model very short term positions, but with marginal efficacy to
predict outcomes.

We have found that the use of neural networks is ineffective, due to the novelty of the
research. Our data set reached one year in duration, and contained upwards of 284,000 rows,
but this in itself was an inadequate data set for a neural solution.

Hence, our constraints are simplified as follows:
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1. Identify market conditions that are associated with extremely short term bursts in price
values.

2. The surges, chosen for the study values, should represent moments when the purchase
price of buy orders was satisfied by the sell price, in the surge. Hence, surges are
evaluated based on their ability to deliver profit, based on the purchase price, during the
moments before it.

3. Surges must deliver immediate value, and create the least risk for the trader. They must
finish in a hasty, no-wait fashion.

Ethical Implications of Algorithmic Trades
For professional money managers, the ethics of executing trades without human

supervision is a 20th century conundrum. There is clear risk of harm to the client, who entrusts
funds, but there are natural upsides to using highly accurate predictions. Methods which lack
explainability lack ethical status, as exemplified by recent decisions by JP Morgan.[8]

However, where investors are informed, and algorithms deliver explanation and
evidence, ethical trading can take place. In this work we aim to document both.

The Distribution of Underlying Data
The most desirable kind of trade occurs during moments where the following features

are present. Precursors associated with the best surges contain a distribution of values like so.
As we will discuss, our data is limited in features. It is also low variance, inside each feature.(fig
2) Highly valuable target classes are easily confused for undesirable trades by classifiers.
Significant imbalance exists between low-value trades and desirable ones. Hence, our feature
engineering had to overcome this, and resampling was used to synthetically create more
balanced, target features. Using a binned label, we identified the relative scarcity of desirable
sequences, which occupied class ‘10’ in this histogram.(fig 1)

Figure 1. A Minority/Exceptional class, ‘10’ Figure 2. Global distribution, all classes
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Design of Experiments
Given the breadth of computational resources, we underwent a two-pronged approach to

discover an optimal machine learning method. Fundamentally, we had to deliver decision
making power for our trader. This could take a binary yes/no form or a nuanced, graded set of
signals. Thus, we organized the study around three key parameters. Machine learning methods
would be either supervised or unsupervised, and features would be balanced, imbalanced, and
labeling would be binned or clustered, depending on an unsupervised process.

Our approach was to integrate supervised and unsupervised learning into two different
phases. Initially, we envisioned utilizing clustering as a strategic approach to categorize
profitability. Over time, this evolved into adopting clustering as a preprocessing step, which
would enhance downstream classification. We found this to be true, in ways we did not foresee.
In general we aimed to do clustering before classification, trying different types of labeling, and
balancing our data set to better support our desired, minority classes.

We had to design a solution to separate high-performance, highly desirable classes,
which were vastly outnumbered. The number of features at our disposal was at a minimum, and
the interquartile variance within features was minimal. Additionally, we sought to choose three
families of classifiers (binary, tree based, and category based) in order to deliver an optimal
result.

Results

Scoring
Our final pipeline reached 90%+ accuracy in test/train conditions where data was resampled
using a synthetic minority technique. In this report we are recommending the following pipeline
steps for 90%+ accuracy.

● Group time contiguous time series observations into two types: precursor and surge,
based on the appearance of above-threshold price variance. Contiguous positive
momentum above threshold qualified a series as surge.

● Standardize the Representation of raw exchange data in percentile change format. This
represented each precursor condition in general terms, independent of changes in
magnitude.

● Bin target values according to a binary distribution, where only the target surges are
identified in a one-hot format.

● Discover clustering techniques with high degrees of silhouette, where clear decision
boundaries could be identified downstream by a classifier
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● In one instance, we used the clustering label as a feature to reach our highest prediction
power, while retaining the bin as our y_label. We have this feature engineering technique
to recommend, for best results.

● Use a simple classifier (KNNeighbors) after using a simple 2 cluster KMeans cluster
● Use a GridSearch cross validation to identify best performing parameters, for each major

choice of machine learning method
● Use synthetic minority class resampling, in order to magnify instances of highly desirable

precursor conditions, based on their surge magnitude.
● Binary classifiers (KNeighbors) and tree based classifiers were the most apt to score

highest
● Category Boosted classifiers participated augmented voting classifiers, in other high

scoring ensemble methods

Based on our comparative study, we affirm that a pipeline where unsupervised learning
is used to engineer features is valuable in achieving best-results in binary classification where
underlying data is low-feature, low variant, with infrequent target classes.

Error Analysis
In our highest performing classifier, our clustered features led to highest accuracy, and the least
false positives.

Learning Curves
In our highest performing multi-class classifier, we found that learning curves where more data
was added, increased accuracy.

Figure 3. Confusion Matrix Figure 4. Learning Curve



6

Discussion

Feature Engineering: Using Data Mining to Expose Sequences in Markets
Once per three to five second interval, market exchange data is downloaded then

aggregated into the following statistics. Typically, there are 13,000 orders per order type in the
order book, with each order following this schema. We obtain data approximately every 15
seconds via websocket from Coinbase using a node.js API.[4,11]

Data Schema
The data is from the cryptocurrency Avalanche, known as the ticker symbol AVAX-USD. Our
javascript application consumes the raw JSON, then delivers a succinct summary of the book
snapshot for each observation. We visualize this basic data schema here.

● Bc: bid capitalization
● Ac: ask capitalization
● Tav: total ask capitalization
● Tbv: total bid capitalization
● Mp: midpoint, or price of the commodity, at observation time

In order to standardize these values, a percent change statistic is generated, with the
ratio of one value to the next. Hence, the machine learning algorithms have a set of floating
point values to use instead of the raw, absolute values, thus increasing the opportunity for an
estimator to learn a pattern. The data used in our pipeline is available under the lob_caps folder
in our github.[12, or here]

This data was initially analyzed during Milestone 1 by Bund.[13] However, the data is
now four times the original size, and is analyzed for the first time in a machine learning context.
There is a block of code in our data prep that is used in Milestone 2 to load multiple .csv files,
and is the sole form of overlap between the projects.

Given this first principles approach, the market is explained as a precursor and a
surge.(fig 5) Since we are seeking the precursors which result in surges, we first organize one
year of sampling multiple times per minute. A total of 284,000 samples become available with
the above schema.

From this schema, we interpret periods of continuous non-positive momentum as
precursors, and periods of continuous momentum as surges.(fig 4) We group these periods
together as sequences, and derive bin values for the edges of the surge_target_met_pct
value. This value describes the percentage of prices, during the precursor, which reached a
target value during the surge.

The closer the percentage is to 1.0, the more that surge provided profit for each order in
the precursor. This provides us with ample room to label each precursor. Our machine learning
strategies were designed to optimally discern profitable sequences from risky, or unprofitable
ones. Our narrative describes how we evolved a pipeline to do this, and the evolved big-picture
statistics we needed to correctly do so.

Once we identify two -part sequences we quantify precursors by their surge value, which
offers us the opportunity to classify them in our machine learning. Simply put, the larger the

https://github.com/stefanbund/grus-code/tree/main/lob_caps
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surge, the more critical the precursor is to our study. The full breadth of features we engineer
during that process is listed here.

Figure 4. Proof of Surge identification Figure 5. Python outputs

Using Unsupervised Learning for profitability
After a comprehensive phase of data processing and feature engineering, we delved into

clustering our data through an array of methodologies including KMeans, Birch, and Mean Shift.
Upon evaluation using the silhouette score, KMeans emerged as the leader, registering a peak
score of approximately 0.88. Figure 21 illustrates an optimized KMeans run, starting with 2
clusters, as a result of a grid search to pinpoint the ideal model parameters in respect to
silhouette score. This figure reveals that despite a strong silhouette score, the score's inflation is
largely attributed to the data set being channeled into two clusters, which is not our desired
configuration. Ideally, we'd prefer a configuration close to the number of bins or labels in our
supervised approach, which is twelve. This configuration can be traced back to the limited
variation within our input features which displays the complexities and unpredictabilities of
algorithmic approaches in financial markets.

Considering these insights, and with our primary objective of identifying sequences of
lucrative trading opportunities in mind, we pivoted our approach. We decided that gauging
clustering merely by cluster separation would be insufficient. Our aim shifted to discerning surge
profitability via clustering. Hence, created an evaluation of cluster quality through the lens of
profitability separation which can be seen in Code Block 1. While not foolproof, this approach
allowed us a perspective on the disparity in profitability within a cluster set. By iterating through
numerous methodologies and their parameters, we found that Birch, KMeans, and Mean Shift
all had iterations with the top profitability scores. However, Mean Shift was dismissed from
profitability scoring consideration due to its propensity to form 175 clusters, over 100 of which
had a singular data point.
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The KMeans vs. Birch Comparative Analysis:
In our quest to discern the best clustering methodology, both K-Means and Birch stood

out as formidable contenders. Each method was evaluated based on three pivotal metrics:
inertia, silhouette score, and cluster profitability.

Inertia:
K-Means (Figure 26): The "elbow" method suggests an optimal cluster range between 8

to 10. As clusters increase, the inertia reduction showcases diminishing returns, indicating that
K-Means effectively segregates data up to a certain point.
Profitability Analysis:

K-Means(Figure 25): Peaks in profitability are observed at 8 clusters, beyond which
there's a decline.

Birch(Figure 27): Displays resilience by maintaining higher profitability scores across
varied cluster counts. Noteworthy peaks are observed at 6 and 10 clusters, underscoring its
proficiency in recognizing patterns conducive to enhanced profitability.
Silhouette Score Analysis:

K-Means(Figure 25): Achieves an optimal silhouette score of around 0.88 with 6 clusters,
indicating its prowess in efficiently distinguishing clusters for the given data set.

Birch(Figure 27): Presents a commendable performance with a peak silhouette score of
around 0.85 for 6 clusters. This consistency across multiple cluster counts demonstrates its
capability to identify cohesive clusters.

Table 1 and Table 2 present detailed metrics on silhouette scores and cluster profitability
for KMeans and Birch. Notably, K-Means achieves a peak silhouette score of approximately
0.88, with Birch trailing closely at around 0.86. Both methodologies display their best
performance with fewer clusters, further emphasizing a potential challenge in differentiating
profitability. In terms of profitability, Birch takes a slight lead with scores cresting at
approximately 0.21, while K-Means reaches a peak at about 0.19. Due to how close the results
are between the two methodologies we contend that both methods offer distinct advantages and
are comparably adept for cluster analysis.

Figures 23 and 24 offer illuminating insights into our analysis. Despite employing our
most optimal scoring techniques, a closer look at the individual clusters reveals a limitation:
there's an inability to distinctly differentiate profitability across clusters. A consistent observation,
particularly in surge_target_met values, is their convergence towards a zero average in
each cluster. The figures presented show these results in both the K-means and Birch
algorithm, optimized using the best model parameters from an exhaustive grid search.

While the test set exhibits greater variability this variance is attributed to the reduced
sample size per cluster, compounded by the presence of outliers. From this analysis, a salient
revelation emerges: relying solely on clustering as a metric for gauging profitability might not
lead to clear-cut conclusions regarding accuracy. However, the silver lining is that these clusters
can potentially offer invaluable features which enhance our classification methodologies.
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Using Clustering as a Feature Engineering Tool
Lastly we employed multiple resampling techniques to augment our dataset, with the aim

of enhancing our supervised score. The code, as seen in code block 2, reflects our iterative
exploration across varying cluster counts of resampled data using KMeans. Our findings, stored
in the `sampled_df` dataframe, revealed that the KMeans with `n_clusters` set to 2 delivered the
most favorable silhouette score. This result is evident from the first image where the `idxmax`
function helps pinpoint the best-performing parameters. Moreover, when adopting an alternative
cluster profitability metric, this configuration still demonstrated scores close to the top as seen in
code block 2. Consequently, the labels derived from these clusters were integrated as input
features into our subsequent classification methodology.

Model Iteration One: Using Multiclass Estimators in Binary Decision Problems
We created reasonably separated classes of data, observable by silhouette scoring.(Fig

7) The adaptation of clustering from a labeling process to a feature engineering step created the
most successful type of our classifier, and allowed us to surpass the accuracy enabled via
binned labeling.

We adopted tree based classifiers, capable of learning many classes, as well as a
Bagging Classifier, then joined them into a voting classifier, to resolve any shortcomings.

Since we needed to discover the precursors needed to deliver complete alpha, we
initiated a multiclass approach, where a multitude of surges were visible, within a many-binned
labeling approach. We adopted a means to bin precursors by their associated surge.

Results expose profitable clusters of precursors, as an extreme minority class. The need
to build more classification instances via synthetic means.

Low accuracy forced us to use feature analysis to discover the classifier which
understood the best cases. But also, given the high degree of confusion over these
most-desired cases, we needed a way to separate good and bad outcomes before we reached
the classifier stage. We saw how one estimator could capture the minority class we sought.(fig.
11) At this point we realized that we really only needed to discover one condition:
whether we should trade the precursor or not.



10

Figure 6. Feature Distributions in the Class ‘10’ we sought
Figure 7. Silhouette for Clustering

Figure 8. Correlated Features, pre classify Figure 9. Confusion Matrix for the voting classifier

Figure 10. Voting Classifier capability to identify the most-desired class

Figure 11. Individual Classifier strength, identifying most desirable class

Model Iteration Two: Binary Estimators for Binary Problems
Our initial solution underperformed due to imbalance data which failed to recognize

desirable minority classes. We sought a binary classifier operating on balanced data, where a
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new binned label began use. In this new binning process, only the desired minority class
received a ‘1’, while all others received a ‘0’. Our code is available here.

Synthetic cases were generated for the optimal class, 10, where at least all price points
in the precursor reach a profitable target. The ADASYN algorithm was chosen for this task, as a
means to build replicated renditions of the core ‘Class 10’ which embodied our target class.[11]
We used a grid search across several potential classifiers, Logistic Regression, Bernouilli Naive
Bayes, and KNeighbors, in hopes they would deliver an appropriate binary decision boundary.[5]

The combined binary bin label, balanced across the dataset, with the binary classifiers
doubled our accuracy, as hoped.(fig 12) The KNeighbors classifier moved accuracy to 93%. A
voting classifier we used, combining the above classifiers also had a 90% accuracy.

According to our SHAP analysis, the precursor_ask_vol_pct_change played the
greatest role in classification. In Balanced Random Forest classifier we ran, chosen to harness
minority class resampling, we achieved an 83% accuracy, where the volume of change in sales
volumes played the largest role in assisting our classifier.(fig 13)

In this transition to binary binning, minority resampling and binary classification, learning
curves for the KNN and Voting Classifier increased as more data was cross validated.(fig 15)

Figure 12. KNeighbors Confusion Matrix Figure 13. Balanced Random Forest SHAP, Explainability

Figure 14. Binary Classifier improvements
Figure 15. Learning Curves, Model 2

https://github.com/stefanbund/grus-code/tree/main/Bund%20Amadi%20final/2%20BIN%20BAL%20BINNED
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Model Iteration Three: Engineering Features via Unsupervised Learning
Within higher performing models, we observed that a category of data was predicting

outcomes in the majority of instances. Two variables associated with selling orders, ask
capitalization and ask order volumes were correlated to clustering results, as well as most likely
leading to correct prediction. Within our 92% accuracy model where multiclass classifiers were
used on balanced data with clustered features, the following correlation matrix was present in
the underlying data. (fig 16) Our code is available here. Our most notable incremental
improvement occurred when we implemented cluster-driven feature engineering. Our addition of
a label derived via unsupervised learning demonstrated the ability to improve on 90%+
accuracy.

Post clustering, cluster labels were associated with the capitalization of sell orders with a
.92 p-value. This strongly correlates selling orders with the surges, accompanying the precursor.

Additionally, we found that sales volume was the greatest predictor among all features,
and among all classifiers in our feature analysis.

Feature Permutation Importance
One engineered feature contained more potency, in affecting the predictive ability of the

model. In each classifier, ‘feature 4’, or the ‘precursor_ask_vol_pct_change’ feature was
identified as most associated with decreases in the model’s accuracy.(fig 17) During our
permutation importance analysis, this feature had the greatest impact on predictor performance.
Permutation importance is a measure of how much an estimator declines in accuracy, due to
changes in certain features.[1]

Thus we infer that selling activity in 2022-23 has the strongest relationship to the
outcome variable, ‘surge_target_met_pct’ where the number of price points in the
precursor was met, and levels of profit were accomplished.

Parametric Sensitivity
Given the large number of parameters tested during two sets of grid searches

(clustering, then classifier), we studied how parameter changes impacted accuracy. We found
that in the majority of cases, changes in hyperparameters inside our voting classifier did not
create statistically significant impacts on prediction accuracy. (fig 20)

In the case of the most impactful classifier within the multiclass classifier, using clustered
features, we found that doubling the max_iteration parameter did not create ramifications
on accuracy.(fig 18) We emulated a model analysis where multiple scoring models are used, on
models with multiple parameters using a cross validated grid search.[2]

In order to study the general impact of hyperparameter changes across the entire voting
classifier, we studied the change in accuracy as all parameters changed. We used the
cv_results_ dictionaries from each permutation of test parameters, and scikit-learn’s
accuracy scores in a global dataframe, to render a global average statistic. Given the large
number of parameters and the multiple classifiers acting in concert, we were more interested in
how parameter customization improved our model.

https://github.com/stefanbund/grus-code/tree/main/Bund%20Amadi%20final/3%20BIN%20BAL%20CLUSTERED
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Figure 16. Correlated Features, Clustered Figure 17. Feature Analysis, sell order feature

Figure 17-2. SHAP, Sell Volumes, Random Forest
Figure 18. HGB Classifier Sensitivity
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Figure 19. Learning Curve Figure 20. Sensitivity Analysis, all Methods

Statement of Work
Stefan Bund collected the API data from Coinbase, organized the study with Classifiers, and
took part in the Data Mining and preprocessing phase.

Emeka Amadi organized the study of clustering and unsupervised learning, and participated in
data preprocessing and Data Mining.

Both team members significantly shared responsibility for the content and quality of each
other's work. Data Mining, Supervised Learning and Unsupervised Learning components were
shared as a team wherever possible.
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Figure 22

Business Rule Constraint: Profit per Cluster Visualization

Figure 23.1( K Means) Figure 23.2(Birch)

Figure 24.1(K Means) Figure 24.2(Birch)
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Figure 25 Figure 26

Figure 27

Cluster Profitability Method
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Code Block 1

Code Block 2

Table 1
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Table 2

Feature Engineering, Data Mining Process
The following columns are generated during the data mining phase.
'group', a faceting of running group by operations
'time', the unix epoch when the precursor begins
's_MP', the price achieved during a surge element
'change', the percent change achieved one row to the next, as a measure of
positive momentum
'type', whether an item occurred within a surge or precursor
'p_MP', price at time of a precursor item
'precursor_buy_cap_pct_change', percentage change in price times volume, buy
order
'precursor_ask_cap_pct_change', percentage change in the price times volume,
sell order
'precursor_bid_vol_pct_change', percentage change in volume, buy order
'precursor_ask_vol_pct_change', percentage change in volume, sell order
'length', the number of orders that fit into a precursor or length, which meet
the thresholds for inclusion as precursor or surge
'sum_change', the total price change during a surge, as a sum of ‘change’
observed between items
'max_surge_mp', largest price witnessed during a surge episode
'min_surge_mp', minimum price witnessed during a surge episode
'max_precursor_mp', largest price witnessed during a precursor episode
'min_precursor_mp', minimum price witnessed during a precursor episode
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'area', the arithmetic distance covered by the triangle of the episode, as a
base times height divided by two, creates a triangular area to describe the
episode
'surge_targets_met_pct', a percentile measure of how many price points inside a
precursor were reached inside a subsequent surge, measures the power of the
surge, a critical label value

Bin Structure, as Prelude to Clustering and Classification

Figure 24

Aggregated LOB Schema, pre standardization

Figure 25


